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In this paper, we study dynamical aspects of the two-dimensional(2D) gonihedric spin model using both
numerical and analytical methods. This spin model has vanishing microscopic surface tension and it actually
describes an ensemble of loops living on a 2D surface. The self-avoidance of loops is parametrized by a
parameterk. Thek=0 model can be mapped to one of the six-vertex models discussed by Baxter, and it does
not have critical behavior. We have found that allowing forkÞ0 does not lead to critical behavior either.
Finite-size effects are rather severe, and in order to understand these effects, a finite-volume calculation for
non-self-avoiding loops is presented. This model, like his 3D counterpart, exhibits very slow dynamics, but a
careful analysis of dynamical observables reveals nonglassy evolution(unlike its 3D counterpart). We find, also
in this k=0 case, the law that governs the long-time, low-temperature evolution of the system, through a dual
description in terms of defects. A power, rather than logarithmic, law for the approach to equilibrium has been
found.
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I. INTRODUCTION

The gonihedric spin model that we are going to study in
this paper was first introduced by Savvidy in higher dimen-
sions as a discretized model for tensionless string theory
[1,2]. Very soon the spin model gained interest by itself in its
three-dimensional version. Also its extension to self-
interacting surfaces(parametrized by a self-avoidance pa-
rameterk) led to a family of models with different critical
behavior and interesting dynamical properties. Extensive nu-
merical and theoretical work appeared[3–7], showing that
the behavior of this 3D model turns out to be glassy[8–12]
even if no disorder is present. The 2D version of the model
turns out to have trivial thermodynamics but rather peculiar
dynamical properties, and this is what motivated us to inves-
tigate this model in detail. To our knowledge, the only exist-
ing study of this 2D version is some work[13] related to the
fluctuation-dissipation theorem. It has been suggested that an
experimental realization of this type of models(see, e.g.,[3])
could be of application to magnetic memory devices.

The Hamiltonian for the gonihedric spin model adapted to
a 2D embedding space is the following:
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wheresi are spin variables on the sites of a 2D square lattice,
ki , jl means the sum over nearest-neighbor pairs,kki , jll
means the sum over next-to-nearest-neighbor pairs, and
fi , j ,k, lg means the sum over groups of four spins forming
elementary plaquettes in the lattice. The coupling constants
of this model are very finely tuned. The dynamics of models
with nearest-neighbor and next-to-nearest-neighbor interac-
tions have only been studied elsewhere[14]. A competing

nearest- and next-to-nearest-neighbor model is obtained for
k=1, where the plaquette term is absent, but it turns out that
the gonihedrick=1 case lies just outside the parameter space
they analyzed. The geometric interpretation is missing in the
choice of couplings of[14].

The energy landscape of this family of models is very
peculiar in any number of dimensions, due mainly to the
large amount of symmetry of the ground state. This symme-
try consists, in the 2D case, in the possibility of flipping all
spins contained in one row or one column of the lattice with-
out changing the energy of the ground state.1 This symmetry
reveals a huge degeneracy of the ground state. This fact,
together with the dynamically generated energy barriers2 that
the system encounters when cooling down, provides the in-
gredients to exhibit glassy behavior, and the 3D model in-
deed does exhibit that type of behavior[11,12].

The k parameter regulates the self-avoidance of the inter-
face (lines in two dimensions) of up and down spins. We
focus our attention on the properties of the interface between
up and down spins, because in the bulk we know that there is
no excess energy. As can be seen in Fig. 1, these interfaces
form loops that may have self-crossings.

By looking at the energy of the loop model, it is not
difficult to see that it can be written asE=n2+4kn4, where
n2 is the number of bending points of the loops formed by
the interface, andn4 is the number of self-crossings. That
means thatk→0 is the limit for the non-self-avoiding loops,
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1There is actually a difference in the symmetry operations you can
perform in thek=0 and thekÞ0 case. In the first case, you can flip
a row or a column of spins without any constraint. In the second
case, from a ferromagnetic state you can flip either only columns or
only rows. Flipping one set of spins of each type increases the
energy due to the generation of energetic configurations at the meet-
ing point of the row and column.

2In the 2D case, the barriers that the model generates dynamically
are not dependent on the length of the domain(unlike the 3D ver-
sion), and this will make a difference in the dynamical behavior.
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and thek→` is the completely-self-avoiding limit, in which
no crossing of loops can exist. Thus the system likes flat
interfaces. This is the main reason for the creation of energy
barriers while cooling. The system tends to flatten its inter-
face at a first stage, but this process favors configurations
where square domains of any size appear, and at low tem-
perature those configurations are very stable.

In the next section, we review the main thermodynamical
features of the model. Section III is dedicated to a numerical
study of the dynamics of this models at low temperature in
order to determine whether there is glassy behavior in the 2D
gonihedric model, as is actually the case in the 3D one. In
Sec. IV, we carry out an analytical study of the behavior of
the system at low temperatures and long times that we then
proceed to compare to a numerical analysis. Our conclusions
are collected in Sec. V. We relegate some technical details to
two Appendixes.

II. THERMODYNAMICS OF THE MODEL

Let us begin with the simplest casek=0 that is exactly
solvable in the infinite-volume limit and can be reduced to an
easily computable sum for finite volume(see Appendix A).
The exact solution for the model withk=0 [18] shows that
there is no phase transition at finite temperature. If we take a
look at Fig. 2, we will see the infinite-volume energy func-
tion and specific heat compared to the numerical results and
to the exact finite-volume calculation. All discrepancies be-
tween simulations and the infinite-volume calculations are
due to finite-volume effects, as we can see by comparing the

FIG. 1. Example of the correspondence between spins and loops. All the energy is concentrated in the corners and crossings of the
loops.

FIG. 2. (a) Energy function and(b) specific heat of the system
for k=0. The exact functions at infinite volume, at finite volume,
and the Monte Carlo simulations are plotted. Temperature is in adi-
mensional units.
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simulations with the exact finite-volume calculations.3 For
the other case withkÞ0, there is no exact infinite-volume
solution or easily computable finite-volume expression, but
the simulations do not show marked differences with thek
=0 case, so we are forced to conclude that there is no ordered
phase at low temperature(see Fig. 3).4 The maximum in the
specific heat seen in thek=0 case is still present at the same
point (as it should, because it reveals the temperature where
the first excitations appear in the bulk) and behaves in the
same way. The only remarkable difference is the appearance
of a second structure for sufficiently largek [an indication
for this can be seen in Fig. 3(b) in the nonmonotonic behav-
ior of the specific heat fork=5 and 9. Notice the rescaling of
the data mentioned in the footnote]. This second structure
can be interpreted as the appearance of a new state for the
plaquette variables whose energy grows withk. No volume

dependence of this structure has been found, so there is no
evidence of phase transition. In Figs. 4(a) and 4(b), we can
actually see the formation of this secondary structure and its
independence on the volume, respectively.

The same model but in three dimensions exhibits a quite
complex phase space, with a thermodynamical transition at a
temperatureTc between two distinct phases that happens to
change from first order to second order when the value ofk
crosses some critical value[6]. Also a dynamical transition is
present in the 3D model at a temperatureTgøTc.

The fact that there is no phase transition in this spin
model can be eventually traced back to the fine tuning of the
parameters in the Hamiltonian. Since there is only one phase,
no useful order parameter can be constructed. This makes
impossible the analysis of the dynamics of this model along
the conventional lines of domain growth used in[15]. The
dynamical properties of this 2D model will be discussed in
the next section.

3It is clear that in this model, the finite-volume effects are very
important, mostly around the temperature where the maximum in
the specific heat is placed. The finite-volume calculations are per-
formed with a 1002 volume and periodic boundary conditions.

4It can be seen from this plot that the energy has been rescaled in
order to have energy −1 at zero temperature. The same kind of
convenient rescaling of the temperature and the specific heat with a
factor depending only onk has been performed to compare the
different simulations.

FIG. 3. (a) Energy function and(b) specific heat of the system
for different values ofk. Only simulations are plotted. Signals of
the nonmonotonic behavior can be seen for thek=5 andk=9 case
in the high-temperature region of the plot. Temperature is in adi-
mensional units.

FIG. 4. A closer look at the secondary structure. In(a) there is
the evolution of the structure withk. Remember that all the data
have been rescaled to make the comparison between them easier. In
(b) the dependence of this structure with the volume is tested for
k=9. The conclusion is that it is not dependent on the volume.
Points correspond toV=302 data and the dashed line toV=3002.
Temperature is in adimensional units.
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III. DYNAMICAL ANALYSIS OF THE MODEL

As we have mentioned above, our motivation in studying
this model is to determine if the dynamical behavior that it
exhibits has glassy features, as its 3D counterpart, or just
signs of very slow evolution. The technique we shall use in
this section will be based on two-time correlation functions
[16,17]. Before entering into details, let us stop for a moment
to understand which are the main features of the evolution of
the system.

A. Thinking about dynamics

For this qualitative analysis, we are going to use the loop
language. As we have seen, all the energy is concentrated in
the corners of the loop and in the crossing of one loop with
each other. To simplify the reasoning, we are going to use the
k=0 limit where the loops can freely cross each other, but
the same conclusions can be obtained withkÞ0. We are
going to study the evolution at low temperatures, so we have
to accept that thermal fluctuations are rare.

A disordered configuration[Fig. 5(a)] will try to evolve
by straightening the boundaries of the domains in order to
minimize the number of corners. After this first thermaliza-
tion, the system will end up with some long lines glued to-
gether with some corners in a nonoptimal way[see Fig.
5(b)]. In general, by decreasing the energy in every step, the
loop is going to get trapped in some very stable states whose
energy cannot decrease further without increasing it tempo-
rarily. The first phase of the evolution is really fast due to the
fact that almost all moves decrease the energy.

From this point on, the evolution is quite slow because
there are energy barriers to jump over that the system has
created during the first fast evolution.

B. Is there a dynamical transition?

Let us now make a more detailed quantitative analysis of
the dynamical behavior of the model. The magnitude we are
going to use is the autocorrelation function of the energy per
plaquetteei

Cst,twd =
1

N
o

i

eistwdeistd, t . tw, s1d

where the sum runs over all the plaquettes in the lattice. To
avoid overcounting the bonds, we have taken the following
definition for the energy per plaquette. For each plaquette,
we will count the energy coming from the plaquette term, the
two next-to-nearest-neighbor terms, and two of the four
nearest-neighbor terms in such a way that one bond is hori-
zontal and the other is vertical.

Let us now describe the results from our numerical analy-
sis. All simulations shown here have been performed with a
metropolis-like Monte Carlo algorithm with periodic bound-
ary conditions. The volume is 1002 in all the data, unless
otherwise indicated. The data presented in this section corre-
spond to averaging over 25 independent systems.

We start by studying two different waiting times, such as,
for example,tw=100, 1000, and a few temperatures. We can
easily see that there are some temperatures where the auto-
correlation functionCst ,twd depends only ont− tw, a good
indication that the system has reached equilibrium(unlike,
for instance, in a glassy phase), while at lower temperatures
the autocorrelation function happens to depend ont and tw
independently. In Fig. 6, we can see an example of this. This
behavior could hint at the existence of some kind of dynami-
cal transition, as in the same model in 3D. To make it clearer,
we can look at the form of the autocorrelation function above
T*, where the supposed dynamical transition would take
place. We can attempt a fit to these data with a stretched
exponential,

A expF− S t − tw

t
DcG . s2d

It is clear from the plots in Fig. 6(a) that the fits are appar-
ently very satisfactory.

If we extractt from the fits and make a plot as a function
of the temperature, we will see thatt grows when we de-
crease the temperature. This would suggest that thet could
diverge at some finite temperature, so we try to fit it with a
powerlike divergence function. The fitting function we have
used is

K

sT − T * db . s3d

The fit is shown in Fig. 8(solid curve), and it provides a
value forT*. The problem is that the value the fit delivers is
around 0.57, while looking at Fig. 6 we expected something
between 0.8 and 0.9, exactly where we are beginning to see
tw dependence. The procedure is thus not self-consistent and
we need some explanation for this discrepancy.

Let us explore much longer waiting times. If we do that,
we will be able to understand exactly what is happening. In
Fig. 7, we discover that at longer waiting times the depen-
dence ontw disappears, leaving only a function oft− tw.
This is an indication that the system is not in a putative
glassy phase but is just exhibiting an extremely slow relax-
ation to equilibrium.

FIG. 5. Examples of loop configurations.(a) A disordered one,
before evolution takes place.(b) After some evolution the loops
have reduced the number of corners and have found a metastable
configuration.
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Once we have reached the equilibrium at lower tempera-
tures, we can fit and extract the autocorrelation time. Adding
these new data to thet versus temperature plot, we realize
that the previous fit is not satisfactory with these new data,
so we are led to make a new fit. After this new fit with more
data is performed, the new value forT* happens to be much
lower than the previous estimation(see Fig. 8, dotted
curve). The new value ofT* decreases to 0.29. Thus sup-
posing that we can go on equilibrating the system at any
temperature for large but finite values oftw, we must con-
clude that theT* parameter will get closer to zero with each
new point we include in the data. We conclude that there is
no dynamical transition to a glassy phase, even though that
was the case in the 3D version of the model.

The autocorrelation function at low temperatures depends
on tw, but when we increase the value oftw this dependence
disappears completely. In this example, the two last sets of
data forT=0.65 coincide, so we can declare that it is inde-
pendent oftw for tw.104 (at this temperature). We have not
reached the complete equilibrium in theT=0.5 case, but we
can see that fortw=104 and tw=105 the coincidence has
grown considerably. So the conclusion is that the autocorre-

lation is approximating to some equilibrium shape. Fork
Þ0, the analysis follows exactly the same steps, and the
same conclusion is reached. We can see in Fig. 9 that the
same kind of behavior is present ink=9.

We can take a look at other observables such as the two-
time overlap functionQstw+ t ,tw+ t8d or the autocorrelation
of the local magnetizationCmstw+ t ,twd [17]. Suppose we let
a system evolve through a timetw. Then we make two cop-
ies of the system and evolve them independently(t and t8,
respectively). Then the observables are defined as

Qstw + t,tw + t8d =
1

N
o

i

si
s1dstw + tdsi

s2dstw + t8d, s4d

Cmstw + t,twd =
1

N
o

i

sistwdsistw + td. s5d

where the upper index indicates which is the copy that the
spin belongs to.

In equilibrium (that is, when the autocorrelation is inde-
pendent oftw), they should satisfy

FIG. 6. Autocorrelation function for different temperatures.(a)
At these temperatures, the autocorrelation function depends only on
t− tw. The fits to the data are plotted with lines.(b) At these lower
temperatures, the autocorrelation looks dependent ontw and t
independently.

FIG. 7. Exploring longer waiting timestw we can see the slow
approximation to equilibrium of the autocorrelation function. Two
different temperatures are plotted. In the lower temperaturesT
=0.5d the equilibrium is not yet reached, but the range where the
dependence intw is not manifest grows withtw. From left to right
the symbols are:1, 3, *, h, L, n, s. The * andh data become
indistinguishable in the plot.

FIG. 8. New data and new fit of the autocorrelation time in
terms of temperature. Temperature is in adimensional units.
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Qstw + t,tw + td = Cmstw + 2t,twd. s6d

We can see in Fig. 10 that the relation(6) is fully accom-
plished by our system, another indication of the nonglassi-
ness of our model(for k=0 in this case). The same behavior
is present inkÞ0.

IV. ANALYTICAL RESULTS FOR THE EVOLUTION

One of the differences between glassy and nonglassy evo-
lution is the fact that for the former, logarithmic growth of
the domains dominates the evolution of the system at long
times. Thus we are used to talking in terms of domains and
domain walls, velocity of the domain growth, or the energy
contained in a domain wall.

The reason that the domain growth concepts cannot be
applied to the gonihedric model in two dimensions, unlike
traditional Ising-type models, is that there is no good local
order parameter that allows us to say when a piece of “or-
dered” system is in one ground state or the other, so we
cannot distinguish domains with a different ground-state
configuration in its bulk.

In the gonihedric spin model, there are so many different
ground states that we can travel around a plaquette without
crossing any extra accumulation of energy, and yet find extra
energy in the plaquette we have been surrounding. This
would not be possible if a domain wall had existed. Here
rather than domains, we have to talk about pointlike defects.
In Fig. 11, we can see an example fork=0 and forkÞ0
where an isolated defect(accumulation of energy) is marked
with a big 3.

A. Defect dynamics at very long times

From now we are going to consider the casek=0. Al-
ready in[13], Buhot and Garrahan defined the dual version
of the gonihedric model we are going to use in this section.
This duality is just a change of variables, from spins to
plaquette variables, where the plaquette variable can be de-
fined as

tfi,j ,k,lg =
1 − ssis jsksld

2
, s7d

i.e., the plaquette dual variable is zero when there is no extra
energy accumulated on it and is equal to +1 when there is a
defect there. Then the extra energy of the system will be just
the sum of thet variables, or the number of defects.5

But the dual model is not just a model of defects. The fact
that the defects are defined in terms of spin configurations of
an interacting spin model is essential, and provides the defect
model in special constrained dynamics. There are some rules
in order to move, create, or annihilate defects: One defect on
its own cannot move; it is stable as it is. The only way it can
move is through the creation of two more defects, which
means climbing up an energy barrierDE=2. In contrast, two
neighboring defects can move freely, but only in one direc-
tion (horizontal pairs move vertically and vertical pairs move
horizontally). The only way defects can disappear is by
meeting four defects in a square pattern, or when a moving
pair collides with an isolated defect. Then the moving pair
will disappear, moving the isolated defect as a result. This
description in terms of moving defects will allow us to find
an analytical expression for the energy decay at very long
times.

The energy is related with the number of defects as we
mentioned before, so we would like to know how defect
density evolves in time. To do that, we need to understand
which is the dominant mechanism that makes defects disap-
pear.

Our starting point will be a system that has relaxed from a
disordered configuration to a low temperature for a long
time. At that moment, we have to consider that all defects are
isolated. In these conditions, the movement of all those de-
fects is really slow, because to move they have to create a
pair of defects, i.e., overcome an energy barrier. The prob-

5Note that this description is useful at long times and low tem-
peratures only whenk=0. This is the case where the crossing-loop-
like plaquettes do not contribute to the energy.

FIG. 9. Example fork=9 of the approximation to the equilib-
rium of the autocorrelation function at temperatureT=0.7. From
left to right, the symbols areq, L, 1, and3. Again the two last
sets of data are indistinguishable in the plot.

FIG. 10. The autocorrelation function of the local magnetization
Cmstw+ t ,twd (symbols) and the overlap functionQstw+ t /2 ,tw
+ t /2d (lines). Lines areCm and symbols areQ data. From left to
right, T=1.1 sqd, T=1.0 shd, T=0.9 sLd, T=0.8 snd, T=0.65
s+d, andT=0.5 s× d. Formula(6) is clearly verified.
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ability to do this is,exps−2/Td, whereT is the temperature.
The characteristic time will thus be,exps2/Td. For low
temperatures, this will be a very long time, and we can ne-
glect the possibility of two pairs of defects being created
successively.

Let us assume that a pair of defects has been created(see
the first diagram of Fig. 12). After this creation, two defects
will move freely either in the horizontal or vertical direction.
Because the movement of the pair is much faster than the
creation of the next pair, the process may conclude in two
ways: either the pair returns to the defect it just left behind
and returns again to the original configuration, or it finds in
its random-walk-like movement another defect, collides with
it, and disappears, resulting in a move for the secondary de-
fect too. The first case leaves the final configuration un-
changed, so it represents a frustrated trial of moving an iso-
lated defect, while the second ends up with two defects
displaced by one lattice step. In Fig. 12, there is a sketch of
that process.

Thus as we are not sure that creating that extra pair is
going to provide a move of the defect because of the frus-
trated trials, we cannot compute the average time for the
traveling pair of defects to reach a given distanced. In fact,
this average time is divergent.6 We have to compute instead
the probability of success in colliding with a target defect
once a pair is created. The inverse of this probability will
give to us(by the same argument as before) the characteristic
time for the successful move to happen.

The probability of creating a pair is already known and is
,exps−2/Td. The probability of a successful move of the
pair, i.e., reaching another defect, can be easily determined
by considering a random walk with an absorbing wall at the
origin, and computing the probability of arriving at a dis-
tanced for the first time [19]. Some details are given in
Appendix B. The result is 1/d. Thus the final probability for
an isolated defect to move one step is

P ,
exps− 2/Td

d
. s8d

But the distanced can be parametrized in terms of the den-
sity of defectsr like d,1/r, so

P , r exps− 2/Td s9d

and clearly the average number of MC steps needed to move
a given defect one site is

t1 , P−1 ,
exps2/Td

r
. s10d

Now, we know the probability of an isolated defect mov-
ing by one step in the lattice. The next thing we need to
know is how often two defects meet each other and become
a pair of defects. This is interesting because once they be-
come a pair, they will move freely and will easily find a third
defect to decay with. Only at this point and not before have
we decreased in two units the overall number of defects.

As the move of a pair is very fast, we only need to know
the characteristic time needed for one defect to meet another
one. The move of defects is a slow random walk with a
characteristic time clickt1. Unlike in the previous case, the
probability of one defect meeting another one is 1, and the
characteristic time needed to travel a distanced will be pro-
portional tod2, so finally the characteristic timet needed for
two defects to meet is

t , t1S1

r
D2

,
exps2/Td

r3 . s11d

Now we can set the differential equation of the evolution
of the number of defects,

dr

dt
,

− 2

t
r , − 2r4exps− 2/Td. s12d

6This can be easily seen by setting the starting point atx0=1, the
absorbing wall atx=0, and the target atx=2. The average time to
reachx=2 will be kTl=`3

1
2 +13

1
2.

FIG. 11. Examples of isolated defects
for (a) k=0 and(b) kÞ0.

FIG. 12. Sketch of the leading process that allows defects to
move. In the first step, an isolated defect transforms in three
complementary defects; then two of them move in a random-walk-
like way until they find a second defect to combine and disappear.
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This differential equation is valid only for low tempera-
tures and long times(because there are only isolated defects),
and low density of defects(because we considered large dis-
tances between defects), but this condition is implicit if we
demand low temperatures and very long times.

Solving Eq. (12), we find that the density of defects
should evolve in time liker, t−1/3, and as a consequence the
energy evolves in the same way. In the next section, we are
going to perform a simulation of the energy at very long
times and compare the way it evolves with our prediction.

B. Long-time simulation

To compare with the analytical result, we performed long
simulations at very low temperatures. For this purpose, we
started with a disordered initial configuration and let it
evolve with a Monte Carlo algorithm at very low tempera-
tures such as 0.4 or 0.33. The final data are the average of 20
independent evolutions from 20 different initial states.

In Fig. 13, we can see the evolution in time of the defect
concentration,7 closely related to the energy density through
the relationr=sE+1d /2 where the energy density is defined
here asE=−s1/Ndoisssssdhi

.
The plateau starts when[13] the system has already

reached a stable configuration and finds energy barriers that
make it difficult to decrease the energy. As we have seen
before, those energy barriers cost an energyDE=2, so the
time needed to reactivate the evolution will be of order
,exps2/Td. After the plateau, the evolution contains only
isolated defects and spontaneous fluctuations in the form of
pairs of defects that appear when an isolated defect is trying
to move. So this should be the range of validity of our cal-
culation, or in other words, in this region the evolution
should be liker, t−1/3. Note that this behavior should set in

rather slowly(see Appendix B) and therefore it should be
apparent only for a very low concentration of defects. Note
also that the evolution depends only on the concentration of
defects once we are in the activated regime.

Indeed, when we look at a plot of the data(see Fig. 13), it
is clear that in the activated regime in a logarithmic scale, the
behavior is approximately linear. However, the slope changes
slightly with the concentration of defects, which we under-
stand as a signal of the slow setting in of the asymptotic
regime which we just discussed. At this very late stage(be-
yond ,53105 Monte Carlo steps forT=0.4), the slope sta-
bilizes to a value close to −0.34; that is really close to the
one we predicted. Note that the bulk of the data lies precisely
in this region (for this temperature, we have run up to 2
3106). For T=0.33, we have not yet reached the region
where the fit of the slope becomes stable, in spite of having
run up to 33106 sweeps; however, we have compared the
slopes at similar values of the concentration of defects with
theT=0.4 case and found quite similar values. From this, we
conclude that for long enough times we would obtain a value
for the slope compatible with the −0.33 we expect.

For kÞ0, it is harder to know exactly what is the law for
the evolution of the defects at long times and low tempera-
tures. Some simulations have been made. In Fig. 14, we
compare a long-time simulation ofk=0 andk=9. It can be
seen that thek=9 case does not seem to follow a power law
(two different volumes fork=9 are shown to reflect that the
plot is volume-independent). At very long times, the evolu-
tion, though rather similar, is actually faster, since the defect
concentration is reaching lower values at shorter times. This
is expected due to the lack of a pure geometrical interpreta-
tion in kÞ0.

V. CONCLUSIONS

In this work, we have analyzed the dynamical behavior of
a two-dimensional spin model with very “geometric” cou-
plings. The microscopic surface tension is zero and the en-
ergy is concentrated on the corners of the loops separating
regions of different ferromagnetic states(ferromagnetic
states are not the only ground states; the degeneracy of the

7This plot is in complete agreement with the plot in Fig. 2(a) of
Ref. [13], where different aspects of the same model are analyzed
with a different kind of Monte Carlo algorithm. Note that our tem-
perature scale is related to the one in[13] by a factor of 2 coming
from the Hamiltonian we used in our simulations.

FIG. 13. Defect concentration as a function of time in a log-log
plot. The slope at the latest stage of evolutions is around 0.34 for
T=0.4.

FIG. 14. Defect concentration as a function of time in a log-log
plot for T=0.4. Two different volumes fork=9 and one fork=0 are
compared.
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ground state is 22, or 2, depending on whether the self-
avoidance parameterk is turned on or not).

The model has rather trivial thermodynamic properties for
non-self-avoiding loops. It can actually be mapped to an ex-
actly solvable six-vertex model, albeit exhibiting rather re-
markable finite-size effects. When the self-avoidance param-
eter is turned on, no phase transition or thermodynamic
singularity is found.

On the contrary, the dynamical properties of the system
are rather interesting. Its 3D counterpart does exhibit loga-
rithmic growth of domains and quite clear glassy behavior
below a certain temperature. We do find slow dynamics, but
they correspond instead to a power lawsk=0d or fastersk
Þ0d, and there is definitely no sign of glassy dynamics, at
least down to the rather low temperatures we have explored.
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APPENDIX A: THE 2D FINITE-SIZE PARTITION
FUNCTION FOR k=0

The partition function for our model withk=0 is

Z = o
hsj

e−bHk=0, sA1d

where hsj is the set of all possible configurations of spins,
andHk=0 is thek=0 rescaled Hamiltonian

H = − o
fi,j ,k,lg

sis jsksl = − o
h

ssss, sA2d

the last step just being a simpler form of writing the Hamil-
tonian, with the notationh meaning spins forming a
plaquette in the lattice.

We can transform the expression(A1) in the following
way:

Z = o
hsj

e−bH = o
hsj

p
h

ebssss sA3d

=fcoshsbdgNo
hsj

p
h

h1 + xssssj, sA4d

where x; tanhsbd. Expanding the product and performing
the summation over configurations, only terms with an even
power on each spin will survive. It is not difficult to see that
this summation can be mapped into another combinatorial
problem.

Consider that we have a term that contains one plaquette.
This term will not contribute unless some of the plaquettes
beside it appear also in that term. We have two ways to make
this term contribute: either we take also the plaquettes above
and below it, or the plaquettes at the right side and the left

side. In any case, we still have problems with four spins(two
spins of each new plaquette), so if we continue adding
plaquettes in the same direction, we will complete a vertical
row of plaquettes or a horizontal one(see Fig. 15) with the
help of the boundary conditions. That means that the sim-
plest combination of plaquettes that is going to contribute to
the summation will be a column or a horizontal line of
plaquettes, and its weight will bex, where, is the length of
the row sN=,2d.

Then we have to count all possible combinations of ver-
tical and horizontal lines, multiplying their weights. Only
two more things have to be taken into account. When a term
contains horizontal and vertical lines, some plaquettes have
to be removed, because if not their spins would have an odd
power (see Fig. 16). The plaquettes that we have to remove
are the ones on the crossings of vertical and horizontal lines.
Finally, an overall 1 /2 factor has to be used to compensate
for the overcounting, because each spin configuration has
two possible representations in this combinatorial problem.

All this has been done to transform the expression

o
hsj

p
h

h1 + ssssxj sA5d

in

2N1

2o
v=0

,

o
h=0

, S,

v
DS,

h
Dx,sh+vd−2hv, sA6d

which is much simpler, at least in a computational sense. The
combinatorial factors ,

v
d is the number of different configu-

rations forv vertical columns of plaquettes, and the same for
the horizontal. Working a little bit more, we can simplify this
expression one step further by performing one of the sum-
mations, and we find its final form,

FIG. 15. One column of plaquettes. Each spin appears two
times, so this term contributes to the sum with a weightx,.

FIG. 16. An example of a term with vertical and horizontal
lines. This term contributes with a weightx2,−2.
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Z, = f2 coshsbdgN1

2o
v=0

, S,

v
Dfxv + x,−vg,, sA7d

where the overcounting is now clear if you realize that each
term is invariant underv→,−v.

Now this expression can be calculated easily at any tem-
perature with a computer for any square lattice. Also in the
limit ,→`, we can calculate exactly the sum in Eq.(A7)
(which is equal to 2 for any temperature different from zero)
and recover the exact expression for the infinite volume par-
tition function

Z` = f2 coshsbdgN. sA8d

Now from these expressions for the partition functions,
we can extract information such as the energy or the specific
heat that we plot in Sec. II.

APPENDIX B: PROBABILITY OF A PAIR OF DEFECTS
MEETING A THIRD ONE

The magnitude we want to calculate is the probability for
a pair of defects following a random walk with an absorbing
wall at x=0 to reach a distancex, where the pair is absorbed,
starting at pointx0. We call this probability fn. In the
asymptotic limit where the number of random walk stepsn is
large, the probability of traveling fromx0 to x in n steps is

Qn
0sx,x0d =

e−sx − x0d2/2n

s2pnd1/2 . sB1d

The index zero denotes that this is an unrestricted random
walk. Now we need to find the probability of going fromx0
to x in n steps with an absorbing wall at the origin. We shall
use the method of images in order to subtract the random
walks that are forbidden because of the wall with an auxil-
iary walker that starts his walk at position −x0. The probabil-
ity we are interested in is

Qn
Wsx,x0d = Qn

0sx,x0d − Qn
0sx,− x0d. sB2d

To take into account that the pair is absorbed at pointx, we
have to exclude random paths wherex is visited more than

once. Let the generating function for the probabilities
Qn

Wsx,x0d be

Pszd = o
n=1

`

Qn
Wsx,x0dzn = o

n=1

`

pnz
n sB3d

and consider the generating function for the probabilities
Qn

Wsx,xd,

Rszd = o
n=0

`

Qn
Wsx,xdzn = o

n=0

`

rnz
n. sB4d

The probabilityfn we are after, obeys the relation

pn = fnr0 + fn−1r1 + fn−2r2 + ¯ + f1rn−1 sB5d

or, in terms of generating functions,

Fszd =
Pszd
Rszd

. sB6d

Finally,

Pszd =
e−xÎ2y

Î2y
fex0Î2y − e−x0Î2yg, sB7d

Rszd =
1

Î2y
f1 − e−2Î2yg, sB8d

where we have takenz=e−y, and the conditionz,1 is
needed to perform the integrations. From these two results
and Eq.(B6),

Fszd =
sinhx0

Î2y

sinhxÎ2y
. sB9d

This generating function evaluated at the particular point8 z
=1− gives us the desired probability

o
n=1

`

fn = Fs1−d =
x0

x
. sB10d
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