PHYSICAL REVIEW E 70, 046117(2004
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In this paper, we study dynamical aspects of the two-dimensi@i gonihedric spin model using both
numerical and analytical methods. This spin model has vanishing microscopic surface tension and it actually
describes an ensemble of loops living on a 2D surface. The self-avoidance of loops is parametrized by a
parametetc. The k=0 model can be mapped to one of the six-vertex models discussed by Baxter, and it does
not have critical behavior. We have found that allowing fof 0 does not lead to critical behavior either.
Finite-size effects are rather severe, and in order to understand these effects, a finite-volume calculation for
non-self-avoiding loops is presented. This model, like his 3D counterpart, exhibits very slow dynamics, but a
careful analysis of dynamical observables reveals nonglassy evo{utibke its 3D counterpaytWe find, also
in this k=0 case, the law that governs the long-time, low-temperature evolution of the system, through a dual
description in terms of defects. A power, rather than logarithmic, law for the approach to equilibrium has been
found.
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I. INTRODUCTION nearest- and next-to-nearest-neighbor model is obtained for
k=1, where the plaquette term is absent, but it turns out that

th_The gonlhed?_c tSP'T n:jodeldtr;at;ve a_:je 90'2.9 ;O s(tjgdy Nthe gonihedrioc=1 case lies just outside the parameter space
1IS paper was irst introduced by savvidy In higher 'men'they analyzed. The geometric interpretation is missing in the
sions as a discretized model for tensionless string theor

; : ) . €Y hoice of couplings of14].
[1.2]. V(_ery soon the spm.model galngd interest .by itself in its The energy landscape of this family of models is very
three-dimensional version. Also its extension to self-

. : . . peculiar in any number of dimensions, due mainly to the
Interacting surface:ﬁpar_ametnzed by a self_-avmdanqe_ pa- large amount of symmetry of the ground state. This symme-
rameterx) led to a family of models with different critical

behavior and interesting dynamical properties. Extensive nutry consists, in the 2D case, in the possibility of flipping all

merical and theoretical work appearf@-7], showing that Spins contained in one row or one columt?aof the lattice with-
the behavior of this 3D model turns out to be glag8y12 out changing the energy of the ground stalhis symmetry

; i . . eveals a huge degeneracy of the ground state. This fact,
even if no disorder is present. The 2D version of the mode ; : :
turns out to have trivial thermodynamics but rather peculiar[Ogether with the dynamically generated energy barfiat

d ical i d this is what motivated us to i the system encounters when cooling down, provides the in-
‘ynamical properties, and this 1s what motivated us 1o 'nyesgredients to exhibit glassy behavior, and the 3D model in-
tigate this model in detail. To our knowledge, the only exist- 4oad does exhibit that type of behavjad, 12

Ing study of Fh's. 2[? version is some wofk3] related to the The « parameter regulates the self-avoidance of the inter-
fluctuation-dissipation theorem. It has been suggested that 3

; . . ce (lines in two dimensionsof up and down spins. We
experimental reqllzat|0n of this type of modésee, _e.g.[3]) focus our attention on the properties of the interface between
could be of application to magnetic memory devices.

N i . . up and down spins, because in the bulk we know that there is
The Hamlltgnlan for the gomhednq spin model adapted ©no excess energy. As can be seen in Fig. 1, these interfaces
a 2D embedding space is the following: form loops that may have self-crossings.
P 1-x By looking at the energy of the loop model, it is not
Hoonin=— K2, 0i0; + > > goj- > > oiojoya, difficult to see that it can be written @=n,+4xn,, where
(%)) () iK1 n, is the number of bending points of the loops formed by

wherego; are spin variables on the sites of a 2D square Iatticethe interface, andh, is the number of self-crossings. That
i P q means thak — 0 is the limit for the non-self-avoiding loops,

(i,j) means the sum over nearest-neighbor pai(s,j))
means the sum over next-to-nearest-neighbor pairs, and

[i,j,k,IT means the sum over groups of four spins forming Thereis actually a difference in the symmetry operations you can
elementary plaquettes in the lattice. The coupling constantgerform in thex=0 and thex # 0 case. In the first case, you can flip
of this model are very finely tuned. The dynamics of models? "oW or a column of spins without any constraint. In the second
with nearest-neighbor and next-to-nearest-neighbor intera&ase, from a ferromagnetic state you can flip either only columns or

tions have only been studied elsewhétd]. A competing only rows. Flipping one §et of spins Qf each typg increases the
energy due to the generation of energetic configurations at the meet-

ing point of the row and column.
%In the 2D case, the barriers that the model generates dynamically
*Email address: espriu@ecm.ub.es are not dependent on the length of the domainlike the 3D ver-
"Email address: prats@ecm.ub.es sion), and this will make a difference in the dynamical behavior.
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FIG. 1. Example of the correspondence between spins and loops. All the energy is concentrated in the corners and crossings of the
loops.

and thex — 0 is the completely-self-avoiding limit, in which

no crossing of loops can exist. Thus the system likes flat 0.2 . , . [

mter_faces. ThIS is t_he main reason for the creation (_)f energy I o Simulations

barriers while cooling. The system tends to flatten its inter- - Exact finite volume
04k — Exact infinite volume P B

face at a first stage, but this process favors configurations
where square domains of any size appear, and at low tem-
perature those configurations are very stable.

In the next section, we review the main thermodynamical
features of the model. Section Il is dedicated to a numerical
study of the dynamics of this models at low temperature in 0.8F
order to determine whether there is glassy behavior in the 2D
gonihedric model, as is actually the case in the 3D one. In f ‘ ‘ ‘ ‘
Sec. IV, we carry out an analytical study of the behavior of I 1 2 3
the system at low temperatures and long times that we then @) Temperature
proceed to compare to a numerical analysis. Our conclusions ‘ . ‘ T
are collected in Sec. V. We relegate some technical details to
two Appendixes.

Energy
=
=N
T

o Simulations
: ---- Exact finite volume
| o — Exact infinite volume

II. THERMODYNAMICS OF THE MODEL

Cv

Let us begin with the simplest cage=0 that is exactly
solvable in the infinite-volume limit and can be reduced to an
easily computable sum for finite volunisee Appendix A
The exact solution for the model with=0 [18] shows that 0
there is no phase transition at finite temperature. If we take a b) 0 Temperature
look at Fig. 2, we will see the infinite-volume energy func-
tion and specific heat compared to the numerical results and FIG. 2. (a) Energy function andb) specific heat of the system
to the exact finite-volume calculation. All discrepancies be-for x=0. The exact functions at infinite volume, at finite volume,
tween simulations and the infinite-volume calculations areand the Monte Carlo simulations are plotted. Temperature is in adi-
due to finite-volume effects, as we can see by comparing thmensional units.
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FIG. 3. (a) Energy function andb) specific heat of the system
for different values ofx. Only simulations are plotted. Signals of
the nonmonotonic behavior can be seen for b and«=9 case
in the high-temperature region of the plot. Temperature is in adi-
mensional units. FIG. 4. A closer look at the secondary structure(anthere is
simulations with the exact finite-volume calculatichEor the evolution of the structure witk. Remember that all the data
the other case with# 0, there is no exact infinite-volume have been rescaled to make the comparison between them easier. In
solution or easily computable finite-volume expression, buf?) the dependence of this structure with the volume is tested for
the simulations do not show marked differences with zhe K=_9. The conclusion is that it is not dependent_on the volume.

=0 case, so we are forced to conclude that there is no order ints correspond tg’." 3C° .dat‘"’: and the dashed line =300
phase at low temperatu(see Fig. 34 The maximum in the emperature Is in adimensional units.
specific heat seen in the=0 case is still present at the same

point (as it should, because it reveals the temperature whe
the first excitations appear in the buland behaves in the vidence of phase transition. In Figgaptand 4B), we can

same way. The only remarkable difference is the appearancee . : .
of a second structure for sufficiently large[an indication gctually see the formation of this secopdary structure and its
for this can be seen in Fig(1 in the nonmonotonic behav- Ndependence on the volume, respectively. - .
ior of the specific heat fok=5 and 9. Notice the rescaling of ~ 1he Same model but in three dimensions exhibits a quite
the data mentioned in the footndtéThis second structure COMPlex phase space, with a thermodynamical transition at a
can be interpreted as the appearance of a new state for tmperaturel; between two distinct phases that happens to
plaquette variables whose energy grows wittNo volume  change from first order to second order when the value of
crosses some critical val(i]. Also a dynamical transition is
3t is clear that in this model, the finite-volume effects are very present in the 3D mode_l ata temperatﬂ'geé_'l_’c. . . .
important, mostly around the temperature where the maximum in The fact that there is no phase transmpn In 'Fh's Spin
the specific heat is placed. The finite-volume calculations are permOdel can b_e eventual!y tr"’,‘ced t?aCk to the_f'ne tuning of the
formed with a 108 volume and periodic boundary conditions. parameters in the Hamiltonian. Since there is only one phase,
“It can be seen from this plot that the energy has been rescaled [0 USeful order parameter can be constructed. This makes
order to have energy -1 at zero temperature. The same kind dfnpossible the analysis of the dynamics of this model along
convenient rescaling of the temperature and the specific heat with 1€ conventional lines of domain growth used[irb]. The
factor depending only o has been performed to compare the dynamical properties of this 2D model will be discussed in

00N~ —— 45 %
Temperature

r(‘ieependence of this structure has been found, so there is no

different simulations. the next section.
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----- - : j C(t,tw) = %2 e(twe(t), t > tw, (1)

where the sum runs over all the plaquettes in the lattice. To
avoid overcounting the bonds, we have taken the following
definition for the energy per plaquette. For each plaquette,
we will count the energy coming from the plaquette term, the
. two next-to-nearest-neighbor terms, and two of the four
""" - i nearest-neighbor terms in such a way that one bond is hori-
~~~~~~ : ; zontal and the other is vertical.
(a) 5 (b)' 5 Let us now describe the results from our numerical analy-
sis. All simulations shown here have been performed with a
FIG. 5. Examples of loop configurationg) A disordered one,  metropolis-like Monte Carlo algorithm with periodic bound-
before evolution takes placéb) After some evolution the loops ary conditions. The volume is 180n all the data, unless
have reduced the number of corners and have found a metastablgherwise indicated. The data presented in this section corre-
configuration. spond to averaging over 25 independent systems.
We start by studying two different waiting times, such as,
lll. DYNAMICAL ANALYSIS OF THE MODEL for exampletw=100, 1000, and a few temperatures. We can
easily see that there are some temperatures where the auto-
As we have mentioned above, our motivation in studyingcorrelation functionC(t,tw) depends only ot—tw, a good
this model is to determine if the dynamical behavior that itindication that the system has reached equilibrigmlike,
exhibits has glassy features, as its 3D counterpart, or jugbr instance, in a glassy phasavhile at lower temperatures
SignS of very slow evolution. The teChnique we shall use |rthe autocorrelation function happens to depend andtw
this section will be based on two-time correlation functionsindependenﬂy_ In Fig. 6, we can see an example of this. This
[16,17. Before entering into details, let us stop for a momenthehavior could hint at the existence of some kind of dynami-
to understand which are the main features of the evolution ofg| transition, as in the same model in 3D. To make it clearer,
the system. we can look at the form of the autocorrelation function above
T*, where the supposed dynamical transition would take
place. We can attempt a fit to these data with a stretched
exponential,

For this qualitative analysis, we are going to use the loop t—tw\e
A exp[— ( ) } (2

A. Thinking about dynamics

language. As we have seen, all the energy is concentrated in
the corners of the loop and in the crossing of one loop with

each other. To simplify the reasoning, we are going to use th
«=0 limit where the loops can freely cross each other, bu ;
the same conclusions can be obtained witt 0. We are ently very satisfactory.

going to study the evolution at low temperatures, so we have If we extractr from the f_|ts and make a plot as a function
to accept that thermal fluctuations are rare. of the temperature, we will see thatgrows when we de-

A disordered configuratiofiFig. 5a)] will try to evolve crease the temperature. This would suggest that-tbeuld

by straightening the boundaries of the domains in order t(&“verge at some finite temperature, o we try tp fit it with a
minimize the number of corners. After this first thermaliza- POWerlike divergence function. The fitting function we have

tion, the system will end up with some long lines glued to_used IS
gether with some corners in a nonoptimal wgsee Fig.

5(b)]. In general, by decreasing the energy in every step, the p———
loop is going to get trapped in some very stable states whose (T-T*)
energy cannot decrease further without increasing it tempo1-_

rarily. The first phase of the evolution is really fast due to the he fit is fhown in Fig. a;SOI'd curve, and it prowaes a
fact that almost all moves decrease the energy. value forT*. The problem is that the value the fit delivers is

From this point on, the evolution is quite slow becausearound Og; wh(;lt(a)lgokmg ?t F'ﬁ' 6 we expegteq S(_)methlng
there are energy barriers to jump over that the system hat%st(\j'\éeen d. an Th. ’ exac:jy wr erﬁ we are h?g'””'?g to Se%
created during the first fast evolution. pendence. The procedure 'S.t us not seli-consistent an
we need some explanation for this discrepancy.
Let us explore much longer waiting times. If we do that,
B. Is there a dynamical transition? we will be able to understand exactly what is happening. In
Fig. 7, we discover that at longer waiting times the depen-
Let us now make a more detailed quantitative analysis oflence ontw disappears, leaving only a function oftw.
the dynamical behavior of the model. The magnitude we ar@his is an indication that the system is not in a putative
going to use is the autocorrelation function of the energy peglassy phase but is just exhibiting an extremely slow relax-
plaquettee, ation to equilibrium.

T

t is clear from the plots in Fig. @) that the fits are appar-

« 3
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T=0.65, tw=100
- T=0.65, tw=1000
+ T=0.65, tw=10000
T=0.65, tw=100000
T=0.5, tw=1000

T=0.5, 1w=10000
T=0.5, tw=100000

CLtw)

0.1

o » o D

0'0]10 100 1000 10000

t-tw (MC)

) 700 FIG. 7. Exploring longer waiting timesv we can see the slow
(a) t-tw (MC) approximation to equilibrium of the autocorrelation function. Two
different temperatures are plotted. In the lower temperatiire
=0.5 the equilibrium is not yet reached, but the range where the
dependence itw is not manifest grows witttw. From left to right
the symbols are+, X, *, 0, &, A, O. The * andOJ data become
indistinguishable in the plot.

lation is approximating to some equilibrium shape. For
1 #0, the analysis follows exactly the same steps, and the
same conclusion is reached. We can see in Fig. 9 that the
same kind of behavior is present k¥ 9.

We can take a look at other observables such as the two-
time overlap functiorQ(tw+t,tw+t’) or the autocorrelation
of the local magnetizatio@,(tw+t,tw) [17]. Suppose we let
a system evolve through a tinte. Then we make two cop-
10000 ies of the system and evolve them independe(itlgndt’,
respectively. Then the observables are defined as

0.1} tw=10

C(t,tw)

0.01
100
(b) t-tw (MC)

FIG. 6. Autocorrelation function for different temperaturés. 1
At these temperatures, the autocorrelation function depends only on Qtw+ttw+t')==> g'i(l)(tW+ HoP(tw+t'), (4)
t—tw. The fits to the data are plotted with lingb) At these lower N7
temperatures, the autocorrelation looks dependentivorand t
independently. 1
Co(tw +t, tw) = NE oi(tw) o (tw + ). (5)

Once we have reached the equilibrium at lower tempera- !
tures, we can fit and extract the autocorrelation time. Addingyhere the upper index indicates which is the copy that the
these new data to the versus temperature plot, we realize gpjn pelongs to.
that the previous fit is not satisfactory with these new data, |n equilibrium (that is, when the autocorrelation is inde-
so we are led to make a new fit. After this new fit with more pendent oftw), they should satisfy
data is performed, the new value &t happens to be much
lower than the previous estimatiosee Fig. 8, dotted .‘
curve. The new value off* decreases to 0.29. Thus sup- *
posing that we can go on equilibrating the system at any 00F
temperature for large but finite values ¥, we must con-
clude that theT* parameter will get closer to zero with each
new point we include in the data. We conclude that there is
no dynamical transition to a glassy phase, even though that
was the case in the 3D version of the model.

The autocorrelation function at low temperatures depends
ontw, but when we increase the valuetef this dependence
disappears completely. In this example, the two last sets of
data forT=0.65 coincide, so we can declare that it is inde- 0
pendent otw for tw> 10" (at this temperatujeWe have not
reached the complete equilibrium in the0.5 case, but we
can see that fotw=10" and tw=1C the coincidence has FIG. 8. New data and new fit of the autocorrelation time in
grown considerably. So the conclusion is that the autocorreterms of temperature. Temperature is in adimensional units.

o Old data for t
@ New data for 1 -
— Fit to the old data

---- Fit to complete set of data

T

L | .
0.6 0.8 1
Temperature
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o . FIG. 10. The autocorrelation function of the local magnetization
_ FIG. 9. Example forK_:Q of thg approximation to the equilib- C,(tw+t,tw) (symbolg and the overlap functiorQ(tw+t/2,tw
rium of the autocorrelation function at temperatire0.7. From +t/2) (lines). Lines areC,, and symbols ar€ data. From left to
left to right, the symbols aré€), ¢, +, and X. Again the two last right, T=1.1(Q) T:l.OHED) T=0.9(0), T=0.8(A), T=0.65

sets of data are indistinguishable in the plot. (+), andT=0.5(x). Formula(6) is clearly verified.

Q(tw +t,tw +1t) = C(tw + 2t,tw). (6) 1= (00
o o T[ijk”:ﬂ"k_“'), R
We can see in Fig. 10 that the relati@) is fully accom- N 2

plished by our system, another indication of the nonglassi- . . .
ness of our modaffor k=0 in this casg The same behavior i.e., the plaquette dual variable is zero when there is no extra
is present inc# 0 energy accumulated on it and is equal to +1 when there is a

defect there. Then the extra energy of the system will be just
the sum of ther variables, or the number of defects.
IV. ANALYTICAL RESULTS FOR THE EVOLUTION But the dual model is not just a model of defects. The fact
One of the differences between glassy and nonglassy evtr_wa_t the de_fects are defingd in terms of spin configurations of
%h interacting spin model is essential, and provides the defect

lution is the fact that for the former, logarithmic growth of model in special constrained dynamics. There are some rules

g;ﬁeior_pr?lgsv\?;r;'gzﬁgz dtrt]g ; \I/I?il:tlci)rT t%frrtr:];oiygé%iﬁts lgg% order to move, create, or annihilate defects: One defect on
: 9 S own cannot move; it is stable as it is. The only way it can

domain walls, velocity of the domain growth, or the ENeT9Y move is through the creation of two more defects, which

contained in a domain wall. Lo :
. means climbing up an energy barri®E=2. In contrast, two
a Tl?ee d r&)afr?g tg?]tihtggrigogfégﬂom gmgﬁgznzanunn?itkgﬁeighboring defects can move freely, but only in one direc-
PP 9 ' tion (horizontal pairs move vertically and vertical pairs move

g?ddeltrlonzfrglrigtge_rtﬁﬁgtrglcl)gvevls&uf ttgastathi\;ﬁe'ﬁ 20 igeizdolfof::rlporizontalm. The only way defects can disappear is by
p . y P meeting four defects in a square pattern, or when a moving
dered” system is in one ground state or the other, so wi

cannot distinauish domains with a different around-stat air collides with an isolated defect. Then the moving pair
X sungut 9 ill disappear, moving the isolated defect as a result. This
configuration in its bulk.

In the gonihedric spin model, there are so many diﬁerendescnptlon in terms of moving defects will allow us to find

; Iytical ion for th |
ground states that we can travel around a plaquette witho In :Sna ytical expression for the energy decay at very long

crossing any extra accumulation of energy, and yet find extra The energy is related with the number of defects as we

energy in the plaq_uettt_a we hav_e been surrou_nding. Thilsnentioned before, so we would like to know how defect
wold not be possible if a domain wall had existed. Heredensity evolves in time. To do that, we need to understand

rather than domains, we have to talk about pointlike defeCt%hich is the dominant mechanism that makes defects disap-
In Fig. 11, we can see an example fer0 and fork#0 pear

where an isolated defe@ccumulation of energyis marked Our starting point will be a system that has relaxed from a

with a big x. disordered configuration to a low temperature for a long
time. At that moment, we have to consider that all defects are

A. Defect dynamics at very long times isolated. In these conditions, the movement of all those de-
fects is really slow, because to move they have to create a

From now we are going to consider the case0. Al- . ) .
going ppair of defects, i.e., overcome an energy barrier. The prob-

ready in[13], Buhot and Garrahan defined the dual versio
of the gonihedric model we are going to use in this section.

This duality is just a change of variables, from spins to °Note that this description is useful at long times and low tem-
plaquette variables, where the plaquette variable can be d@eratures only wher=0. This is the case where the crossing-loop-
fined as like plaquettes do not contribute to the energy.
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,,,,,, D W

AAAAAA @@X :liglzgzrgyith /@/gx.. for Ziilo aEr)l(g(nk:)p lfi%f Solated defects
AAAAAA ... @@..

o : : . : o . . . .

ability to do this is~exp(—2/T), whereT is the temperature. P~ pexp—2/M) (9)

The characteristic time will thus be-exp2/T). For low
temperatures, this will be a very long time, and we can neand clearly the average number of MC steps needed to move
glect the possibility of two pairs of defects being created@ given defect one site is
successively.

Let us assume that a pair of defects has been cr¢seéed 7~ P~ M_
the first diagram of Fig. 12 After this creation, two defects P
will move freely either in the horizontal or vertical direction.

(10

ways: either the_ pair return.s .to the d(_afect '.t Just "?ft _behmda pair of defects. This is interesting because once they be-
and returns again to the original configuration, or it finds in

its random-walk-like movement another defect, collides WithcOme a pair, they will move freely and will easily find a third
) . o ' defect to decay with. Only at this point and not before have
it, and disappears, resulting in a move for the secondary d

Sve decreased in two units the overall number of defects.

fect too. The first case leaves the final configuration un- As the move of a pair is very fast, we only need to know

changed, so it represents a frustrated trial of moving an ISOt'he characteristic time needed for one defect to meet another

lated defect, while the second ends up with two defects ne. The move of defects is a slow random walk with a

displaced by one lattice step. In Fig. 12, there is a sketch 0gharacteristic time click. Unlike in the previous case, the

that process. .probability of one defect meeting another one is 1, and the

oi-lr-l huts(,) as;ov\\//i%ear: rggf/esirfe téza;;fcitlggcgzasteeggrﬁwep?rlle— haracteristic time needed to travel a distadaeill be pro-
going to p . ortional tod?, so finally the characteristic timeneeded for
trated trials, we cannot compute the average time for th .
. ! . . wo defects to meet is
traveling pair of defects to reach a given distadcén fact,
this average time is divergehiWe have to compute instead <1>2 exp(2/T)
T~ T\ — ~ T a5 .

the probability of success in colliding with a target defect 3 (11

once a pair is created. The inverse of this probability will p p

give to us(by the same argument as befptiee characteristic Now we can set the differential equation of the evolution
time for the successful move to happen. of the number of defects,
The probability of creating a pair is already known and is
~exp(—2/T). The probability of a successful move of the dp -2 .,
pair, i.e., reaching another defect, can be easily determined q P T 2exa=2m). (12)

by considering a random walk with an absorbing wall at the
origin, and computing the probability of arriving at a dis-
tanced for the first time[19]. Some details are given in
Appendix B. The result is Id. Thus the final probability for
an isolated defect to move one step is

D exp(—2/T).

g (8

But the distanceal can be parametrized in terms of the den-
sity of defectsp like d~1/p, so '

- FIG. 12. Sketch of the leading process that allows defects to

This can be easily seen by setting the starting poinatl, the move. In the first step, an isolated defect transforms in three
absorbing wall ak=0, and the target at=2. The average time to complementary defects; then two of them move in a random-walk-
reachx=2 will be (T)=c0 X %+1>< % like way until they find a second defect to combine and disappear.
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FIG. 14. Defect concentration as a function of time in a log-log
FIG. 13. Defect concentration as a function of time in a log-log p|ot for T=0.4. Two different volumes fok=9 and one fok=0 are
plot. The slope at the latest stage of evolutions is around 0.34 fogompared.

T=0.4.

o _ o _ rather slowly(see Appendix B and therefore it should be

This differential equation is valid only for low tempera- apparent only for a very low concentration of defects. Note
tures and long timeghecause there are only isolated defgcts g|so that the evolution depends only on the concentration of
and low density of defectdecause we considered large dis- defects once we are in the activated regime.
tances between defe§;t$)ut this condition is ImpIICIt if we Indeed, when we look at a p|0t of the dMe F|g 13 it
demand low temperatures and very long times. is clear that in the activated regime in a logarithmic scale, the

Solving Eg. (12), we find that the density of defects pehavior is approximately linear. However, the slope changes
should evolve in time likg~t™% and as a consequence the gjightly with the concentration of defects, which we under-
energy evolves in the same way. In the next section, we argtand as a signal of the slow setting in of the asymptotic
going to perform a simulation of the energy at very longregime which we just discussed. At this very late stéoe
times and compare the way it evolves with our prediction. yond ~5 X 10° Monte Carlo steps fol =0.4), the slope sta-
bilizes to a value close to —0.34; that is really close to the
one we predicted. Note that the bulk of the data lies precisely

To compare with the analytical result, we performed long!" this region(for this temperature, we have run up to 2

simulations at very low temperatures. For this purpose, we 10°). For T=0.33, we have not yet reached the region
started with a disordered initial configuration and let it Where the fit of the slope becomes stable, in spite of having

evolve with a Monte Carlo algorithm at very low tempera- 'un up to 3x 10° sweeps; however, we have compared the

tures such as 0.4 or 0.33. The final data are the average of S}PPes at similar values of the concentration of defects with

independent evolutions from 20 different initial states. theT=0.4 case and found quite similar values. From this, we
In Fig. 13, we can see the evolution in time of the defectconclude that for Iong enou_gh times we would obtain a value

concentratior], closely related to the energy density through for the slope compatible with the —0.33 we expect.

the relationp=(E+1)/2 where the energy density is defined FOr«#0, itis harder to know exactly what is the law for

here aE=~(1/N)3(cooo) the evolution of the defects at long times and low tempera-

| it

tures. Some simulations have been made. In Fig. 14, we
The plateau starts whefil3] the system has already . . ) ”
i ; . . compare a long-time simulation a=0 and«=9. It can be
reached a stable configuration and finds energy barriers tha

make it difficult to decrease the energy. As we have seenten that th&=9 case does not seem to follow a power law
before, those energy barriers cost an enek@=2, so the ?two different volumes fork=9 are shown to reflect that the

time needed to reactivate the evolution will be of orderp.IOt IS volume-lndep_en_de)a'fAt very long times, the evolu-
. . tion, though rather similar, is actually faster, since the defect
~exp(2/T). After the plateau, the evolution contains only

. . . ncentration is reaching lower values at shorter times. This
isolated defects and spontaneous fluctuations in the form c?ioexpected due to the lack of a pure geometrical interpreta-
pairs of defects that appear when an isolated defect is tryingOn in 0

to move. So this should be the range of validity of our cal- '
culation, or in other words, in this region the evolution

should be likep~t%/3. Note that this behavior should set in

B. Long-time simulation

V. CONCLUSIONS

In this work, we have analyzed the dynamical behavior of
"This plot is in complete agreement with the plot in Figaoof ~ @ two-dimensional spin model with very “geometric” cou-
Ref. [13], where different aspects of the same model are analyze®!ings. The microscopic surface tension is zero and the en-
with a different kind of Monte Carlo algorithm. Note that our tem- €rgy is concentrated on the corners of the loops separating
perature scale is related to the ong/113] by a factor of 2 coming regions of different ferromagnetic statg$erromagnetic
from the Hamiltonian we used in our simulations. states are not the only ground states; the degeneracy of the
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ground state is 2 or 2 depending on whether the self-
avoidance parameter is turned on or not
The model has rather trivial thermodynamic properties for
non-self-avoiding loops. It can actually be mapped to an ex- spins contributing
actly solvable six-vertex model, albeit exhibiting rather re- with an even power
markable finite-size effects. When the self-avoidance param-
eter is turned on, no phase transition or thermodynamic
singularity is found.
On the contrary, the dynamical properties of the system
are rather interesting. Its 3D counterpart does exhibit loga- _
rithmic growth of domains and quite clear glassy behavior F!G- 15. One column of plaquettes. Each spin appears two
below a certain temperature. We do find slow dynamics, buimes: so this term contributes to the sum with a weight
they correspond instead to a power law=0) or faster(x
#0), and there is definitely no sign of glassy dynamics, atside. In any case, we still have problems with four sgtn®
least down to the rather low temperatures we have explore@Pins of each new plaquefteso if we continue adding
plaquettes in the same direction, we will complete a vertical
row of plaquettes or a horizontal origee Fig. 15 with the
ACKNOWLEDGMENTS help of the boundary conditions. That means that the sim-

D.E. and A.P acknowledges support from “EUROGRID- plest combination of plaquettes that is going to contribute to
Discrete random geometries: from solid state physics tdhe summation will be a column or a horizontal line of
guantum gravity” (HPRN-CT-1999-00161 D.E. also ac- plaguettes, and its weight will b¢ where¢ is the length of
knowledges support from FPA-2001-3598 and CIRIT Granthe row(N=¢?).

No. 2001SGR-00065, and A.P. from CIRIT Grant No. Then we have to count all possible combinations of ver-
2001FI-00387. tical and horizontal lines, multiplying their weights. Only

two more things have to be taken into account. When a term
contains horizontal and vertical lines, some plaquettes have
to be removed, because if not their spins would have an odd
power (see Fig. 16 The plaquettes that we have to remove

APPENDIX A: THE 2D FINITE-SIZE PARTITION
FUNCTION FOR k=0

The partition function for our model witk=0 is are the ones on the crossings of vertical and horizontal lines.
Finally, an overall 1/2 factor has to be used to compensate
Z= ePMwo, (A1) for the overcounting, because each spin configuration has

(o} two possible representations in this combinatorial problem.

where{o} is the set of all possible configurations of spins, All this has been done to transform the expression

andH g is the k=0 rescaled Hamiltonian S [1{1+oooox (A5)

H=- 2, 0i0j0x0 = = > gooo, (A2) 0
[ij,kl] o
the last step just being a simpler form of writing the Hamil- 15 L e\ e
tonian, with the notationC] meaning spins forming a rARDS 2( )( )Xé‘(hw}—zhv, (AB)
plaquette in the lattice. 2,20h0 \v/\h
We can transform the expressigAl) in the following

in

way: which is much simpler, at least in a computational sense. The
combinatorial factov(v) is the number of different configu-
Z=>ePt=2 []efroor (A3) rations forv vertical columns of plaquettes, and the same for
{o} {o} O the horizontal. Working a little bit more, we can simplify this
expression one step further by performing one of the sum-
=[cosh(,8)]NE H (1 +x0000} (A4) mations, and we find its final form,
{o} O

where x=tanH ). Expanding the product and performing
the summation over configurations, only terms with an even
power on each spin will survive. It is not difficult to see that

this summation can be mapped into another combinatorial 4
problem.. . > This plaquette is not
Consider that we have a term that contains one plaquette. present in this term

This term will not contribute unless some of the plaguettes
beside it appear also in that term. We have two ways to make
this term contribute: either we take also the plaquettes above FIG. 16. An example of a term with vertical and horizontal
and below it, or the plaquettes at the right side and the leftines. This term contributes with a weigk#‘~2.
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¢ once. Let the generating function for the probabilities

Z,=[2 coshi,B)]N%E (f )[x” +xtv]¢, (A7) QY(x,%) be

v=0

where the overcounting is now clear if you realize that each P(2) = >, QY(x,x0)Z"= >, pnZ” (B3)
term is invariant undev — ¢ —v. n=1 n=1

Now th'§ expression can be calculated ea_S|Iy at any teménd consider the generating function for the probabilities
perature with a computer for any square lattice. Also in th Wix x)
limit €—o0, we can calculate exactly the sum in E@7) namen
(which is equal to 2 for any temperature different from zero ~ ~
and recover the exact expression for the infinite volume par- R(@) =2 Qu(xx2"= 2 r2". (B4)
tition function n=0 n=0

2, =[2 costiB)]". (A8) The probabilityf, we are after, obeys the relation

. . . =f o+ foqgry+fofo+ - +fr - B
Now from these expressions for the partition functions, Pn=Tnfo* fn-1fa +In-2f2 tn-l (B5)
we can extract information such as the energy or the specifior, in terms of generating functions,
heat that we plot in Sec. Il.

Foy= 22 (86)
)= ——.

R(2)

APPENDIX B: PROBABILITY OF A PAIR OF DEFECTS Finall
MEETING A THIRD ONE Y _
—X\2y _ _

The magnitude we want to calculate is the probability for P(2) = —=[e0¥ - 7], (B7)
a pair of defects following a random walk with an absorbing v2y
wall atx=0 to reach a distance where the pair is absorbed,
starting at pointx,. We call this probabilityf,. In the _ 1 oy
asymptotic limit where the number of random walk staps R(@)= \,/5[1 e, (B8)

large, the probability of traveling from, to x in n steps is N )
where we have takemz=€7, and the conditionz<1 is

0 ~ g X020 needed to perform the integrations. From these two results
Qn(X,%o) = “2m)? (B1)  and Eq.(B6),
- o
The index zero denotes that this is an unrestricted random F(z =M (B9)
walk. Now we need to find the probability of going froxg sinth'ZT/

to x in n steps with an absorbing wall at the origin. We shall __ ) , ) .
use the method of images in order to subtract the randomNiS generating function evaluated at the particular Baint
walks that are forbidden because of the wall with an auxil-—1 9ives us the desired probability

iary walker that starts his walk at positioxg- The probabil- > X
ity we are interested in is E fa= A1) = ;0. (B10)
n=1
Qn'(%,%0) = QX X0) = Qu(X, = Xo). (B2)
To take into account that the pair is absorbed at pwjnte 87=1" means that we must approximateze1 from below, i.e.,

have to exclude random paths whetés visited more than lim,_ o F(1-|€)).
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